skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Campos, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motor vehicles are among the major sources of pollutants and greenhouse gases in urban areas and a transition to “zero emission vehicles” is underway worldwide. However, emissions associated with brake and tire wear will remain. We show here that previously unrecognized volatile and semi-volatile organic compounds, which have a similarity to biomass burning emissions are emitted during braking. These include greenhouse gases or, these classified as Hazardous Air Pollutants, as well as nitrogencontaining organics, nitrogen oxides and ammonia. The distribution and reactivity of these gaseous emissions are such that they can react in air to form ozone and other secondary pollutants with adverse health and climate consequences. Some of the compounds may prove to be unique markers of brake emissions. At higher temperatures, nucleation and growth of nanoparticles is also observed. Regions with high traffic, which are often disadvantaged communities, as well as commuters can be impacted by these emissions even after combustion-powered vehicles are phased out. 
    more » « less
  2. Abstract A paradigm in paleoclimatology holds that shifts in the mean position of the Intertropical Convergence Zone were the dominant climatic mechanism controlling rainfall in the tropics during the last glacial period. We present a new paleo-rainfall reconstruction based on speleothem stable oxygen isotopes record from Colombia, which spans most of the last glacial cycle. The strength and positioning of the Intertropical Convergence Zone over northern South America were more strongly affected by summer insolation at high northern latitudes than by local insolation during the last glacial cycle, resulting in an antiphased relationship with climate in the Cariaco Basin. Our data also provide new insight into how orbital forcing amplified/dampened Intertropical Convergence Zone precipitation during millennial-scale events. During Greenland Stadial events, the Intertropical Convergence Zone was positioned close to the latitude of El Peñon, as expressed by more negative δ18O values. Greenland Interstadial events are marked by relatively high stable oxygen isotope values and reduced rainfall in the El Peñon record, suggesting a northward withdrawal of the Intertropical Convergence Zone. During some Heinrich Stadial events, and especially Heinrich Stadial 1, the Intertropical Convergence Zone must have been displaced away from its modern location near El Peñon, as conditions were very dry at both El Peñon and Cariaco. 
    more » « less